
4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 1/10

Stay Out Of Trouble
Now that our scripts are getting a little more complicated, I want to point out some
common mistakes that you might run into. To do this, create the following script
called trouble.bash. Be sure to enter it exactly as written.

#!/bin/bash

number=1

if [$number = "1"]; then
 echo "Number equals 1"
else
 echo "Number does not equal 1"
fi

When you run this script, it should output the line "Number equals 1" because, well,
number equals 1. If you don't get the expected output, check your typing; you made

Validation failed. Please retry or wait till
W3C allows validation again

X

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 2/10

number equals 1. If you don't get the expected output, check your typing; you made
a mistake.

Empty Variables
Edit the script to change line 3 from:

number=1

to:

number=

and run the script again. This time you should get the following:

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 3/10

[me@linuxbox me]$./trouble.bash
/trouble.bash: [: =: unary operator expected.
Number does not equal 1

As you can see, bash displayed an error message when we ran the script. You
probably think that by removing the "1" on line 3 it created a syntax error on line 3,
but it didn't. Let's look at the error message again:

./trouble.bash: [: =: unary operator expected

We can see that ./trouble.bash is reporting the error and the error has to do
with "[". Remember that "[" is an abbreviation for the test shell builtin. From this
we can determine that the error is occurring on line 5 not line 3.

First, let me say there is nothing wrong with line 3. number= is perfectly good
syntax. You will sometimes want to set a variable's value to nothing. You can
confirm the validity of this by trying it on the command line:

[me@linuxbox me]$ number=
[me@linuxbox me]$

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 4/10

See, no error message. So what's wrong with line 5? It worked before.

To understand this error, we have to see what the shell sees. Remember that the
shell spends a lot of its life expanding text. In line 5, the shell expands the value of
number where it sees $number. In our first try (when number=1), the shell
substituted 1 for $number like so:

if [1 = "1"]; then

However, when we set number to nothing (number=), the shell saw this after the
expansion:

if [= "1"]; then

which is an error. It also explains the rest of the error message we received. The "="
is a binary operator; that is, it expects two items to operate upon - one on each side.
What the shell is trying to tell us is that there is only one item and there should be a

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 5/10

What the shell is trying to tell us is that there is only one item and there should be a
unary operator (like "!") that only operates on a single item.

To fix this problem, change line 5 to read:

if ["$number" = "1"]; then

Now when the shell performs the expansion it will see:

if ["" = "1"]; then

which correctly expresses our intent.

This brings up an important thing to remember when you are writing your scripts.
Consider what happens if a variable is set to equal nothing.

Missing Quotes
Edit line 6 to remove the trailing quote from the end of the line:

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 6/10

 echo "Number equals 1

and run the script again. You should get this:

[me@linuxbox me]$./trouble.bash
./trouble.bash: line 8: unexpected EOF while looking for
matching "
./trouble.bash: line 10 syntax error: unexpected end of
file

Here we have another case of a mistake in one line causing a problem later in the
script. What happens is the shell keeps looking for the closing quotation mark to tell
it where the end of the string is, but runs into the end of the file before it finds it.

These errors can be a real pain to find in a long script. This is one reason you
should test your scripts frequently when you are writing them so there is less new
code to test. I also find that text editors with syntax highlighting make these kinds of
bugs easier to find.

Isolating Problems

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 7/10

Isolating Problems
Finding bugs in your programs can sometimes be very difficult and frustrating. Here
are a couple of techniques that you will find useful:

Isolate blocks of code by "commenting them out." This trick involves putting
comment characters at the beginning of lines of code to stop the shell from reading
them. Frequently, you will do this to a block of code to see if a particular problem
goes away. By doing this, you can isolate which part of a program is causing (or not
causing) a problem.

For example, when we were looking for our missing quotation we could have done
this:

#!/bin/bash

number=1

if [$number = "1"]; then
 echo "Number equals 1
#else
echo "Number does not equal 1"
fi

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 8/10

By commenting out the else clause and running the script, we could show that the
problem was not in the else clause even though the error message suggested that
it was.

Use echo commands to verify your assumptions. As you gain experience
tracking down bugs, you will discover that bugs are often not where you first expect
to find them. A common problem will be that you will make a false assumption about
the performance of your program. You will see a problem develop at a certain point
in your program and assume that the problem is there. This is often incorrect, as we
have seen. To combat this, you should place echo commands in your code while
you are debugging, to produce messages that confirm the program is doing what is
expected. There are two kinds of messages that you should insert.

The first type simply announces that you have reached a certain point in the
program. We saw this in our earlier discussion on stubbing. It is useful to know that
program flow is happening the way we expect.

The second type displays the value of a variable (or variables) used in a calculation
or test. You will often find that a portion of your program will fail because something
that you assumed was correct earlier in your program is, in fact, incorrect and is
causing your program to fail later on.

Watching Your Script Run
It is possible to have bash show you what it is doing when you run your script. To
do this, add a "-x" to the first line of your script, like this:

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 9/10

#!/bin/bash -x

Now, when you run your script, bash will display each line (with expansions
performed) as it executes it. This technique is called tracing. Here is what it looks
like:

[me@linuxbox me]$./trouble.bash
+ number=1
+ '[' 1 = 1 ']'
+ echo 'Number equals 1'
Number equals 1

Alternately, you can use the set command within your script to turn tracing on and
off. Use set -x to turn tracing on and set +x to turn tracing off. For example.:

#!/bin/bash

number=1

set -x

4/2/2015 Writing shell scripts - Lesson 9: Stay Out Of Trouble

http://linuxcommand.org/lc3_wss0090.php 10/10

set -x
if [$number = "1"]; then
 echo "Number equals 1"
else
 echo "Number does not equal 1"
fi
set +x

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in
any medium, provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net

